Abstract:
This paper introduces a mobile tutoring system for teaching Java operators carried out in a mobile learning environment. For college students to overcome the difficulties they face. The application offers the subject of Java operators and administrators routinely generated problems for the students to solve and right their wrong Answers. This application generates tests to determine the student's understanding of the lesson introduced and the results obtained. A preliminary evaluation learn about was once carried out to look at the impact of using the mobile tutoring system on the performance of college students enrolled in Java course in the institute of computer sciences and Information technology at El Shrouk academy, Cairo, Egypt. The results confirmed a positive impact on the learners and adaptability.

Keywords: Mobile Tutoring System, Java operators, Mobile learning.

1. Introduction
Modern education is the main means of society to meet the challenges of the age, which are characterized by many variables and developments in various aspects, political, economic, social, and educational others. And became the real force in this age of the challenges of the age, which are characterized by many variables and developments in various aspects, political, economic, social, and educational others. And became the real force in this age of

2. Literature review
There are many Mobile Tutoring Systems (MTS) that have been designed and developed for many areas such as:
In this study (1) is the first mobile-based tutorial framework that can support distance learners in Ethiopia by considering St. Mary's University as a tutorial Space and others.

Q1 - How important is the use of mobile learning Applications in general and Mobile tutoring system (MTS) in class, especially in higher education institutions. Especially, the higher institute of computing and information technology in El Shrouk Academy. The academic administration of any Egyptian higher education institute did not have any information on the level of student interest in participating in mobile learning.

Q2 - What is the extent of understanding of the scientific material of programming (Java operators especially)?

Q3 - How to design, implement and measure performance of the proposed mobile tutoring system?

Q4 - What is the impact of the proposed mobile application on the educational community in universities in Egypt?

Q5 - What is the extent of the society's influence on the education from terms such as demographics of population in different governorates at different universities in Egypt?

4. Research objectives
1) Building a proposed mobile tutoring system for teaching Java operators in higher education.
2) Determining the characteristics of the system most in need and most requested according to academics and experts in this field.
6. Research importance
1) Provide the system that suites the environment we have in Egypt, user friendly and cost effective.
2) Development of learning tools and technology to be compatible with modern technology developments and this has been taken into account in the proposed system.
3) Learners could be able to learn at their own pace, anywhere using any device to be self-educated.
4) Provides an automatic and intellectual teaching methodology.
5) Provide curriculum content suggesting unit operators in the language of Java as an important key issues in the programming language Java.
6) The importance of developing educational Mobile Application automated service using mobile learning technology have been taken into account because our mobile application has shown positive results. 7. Research Methodology
The researcher used the analytical descriptive method, case study method, questionnaire method and experimental method.
8. Research hypotheses
The research hypotheses were formulated as follows: 1) There are statistically significant differences between the average scores of the sample in the extent of understanding of the scientific material of programming (Java operators especially). The pretest before and after the use of the proposed Mobile tutoring system to teach the "Java operators" unit for the benefit of the post application at the level of (0.01).
2) There are statistically significant differences between the average scores of the sample in the impact of the proposed mobile application on the educational community in universities in Egypt. The post-test before and after the use of the proposed Mobile tutoring system to teach the "Java operators" unit for the benefit of the post application at the level of (0.01).
3) There are statistically significant differences between the average scores of the sample in the extent of the society's influence on the education from terms such as demographics of population in different governorates at different universities of Egypt. The post-test before and after the use of the proposed Mobile tutoring system to teach the "Java operators" unit for the benefit of the post application at the level of (0.01).
4) There are statistically significant differences between the average scores of the sample in the impact of the proposed mobile application on the educational community in universities in Egypt the post-test before and after the use of the proposed Mobile tutoring system to teach the "Java operators" unit for the benefit of the post application at the level of (0.01).
5) There are statistically significant differences between the average scores of the sample in the extent of the society's influence on the education from terms such as demographics of population in different governorates at different universities of Egypt, the post-test before and after the use of the proposed Mobile tutoring system to teach the "Java operators" unit for the benefit of the post application at the level of (0.01).
6) There are statistically significant differences between the average scores of the sample in the extent of the society's influence on the education from terms such as demographics of population in different governorates in the most influential universities in different governorates at different universities of Egypt, the post-test before and after the use of the proposed Mobile tutoring system to teach the "Java operators" unit for the benefit of the post application at the level of (0.01).
of intelligent tutoring systems to a wider audience of learners. Despite the fact that nearly all schools provide internet and computer access to students, a deeper examination reveals that the presence of technology does not equate to effective use of the technology. Perhaps surprisingly, in a recent survey, only one-third of survey teachers indicate feeling prepared to use computers and the internet for instruction (8). Another factor hindering use is the student-to-computer ratio in schools: in 2005, no school reported having one computer for each child with the lowest computer-to-student ratio being approximately 3:1. Unfortunately, schools with greater numbers of minority students enrolled reported a higher number of students per computer (8). The low cost of mobile and handheld devices has the potential to deliver a one-to-one computing solution to the education community (9).

Java (programming language)

Java is a general-purpose computer-programming language that is concurrent, class-based, object-oriented, and specifically designed to have as few implementation dependencies as possible. It is intended to let application developers “write once, run anywhere” (WORA), meaning that compiled Java code can run on all platforms that support Java without the need for recompilation. (11) Java applications are typically compiled into bytecode that can run on any Java virtual machine (JVM) regardless of computer architecture. As of 2016, Java is one of the most popular programming languages in use, (12) particularly for client-server web applications, with a reported 9 million developers. (12) Java was originally developed by James Gosling at Sun Microsystems (which has since been acquired by Oracle Corporation) and released in 1995 as a core component of Sun Microsystems' Java platform. The language derives much of its original features from SmallTalk, with a syntax similar to C and C++, but it has fewer low-level facilities than either of them. (15)

References


Breast cancer is one of the fatal diseases in the world nowadays. It is caused by some genetic and non-genetic factors. It is primary cause of death in developed and developing countries. Early detection of cancer is the perfect way to reduce it, so that it may be curable. The target is to reduce mortality rates by diagnosis of breast cancer earlier in Egypt and therefore having a better chance of surviving from this disease. The goal of breast cancer prediction system and diagnosis is to help female and doctors to discover the disease before the appearance of symptoms and help millions of lives. The system is a breast cancer prediction application which will be an easy way for normal prediction of breast cancer and according to some steps will be followed by the female whatever if she is affected or not to be as early prediction. This study is intended to enhance the breast cancer diagnosis by focusing on using the data mining techniques. Classification is a major technique in data mining and widely used in various fields. It’s a data mining function that assigns items in a collection to target categories or classes, and accurately predicts the target class for each case. Final results through WEKA which use a decision tree that shows that applying C4.5 builds a more efficient tree which gives high prediction accuracies, faster and better results. As a result, the tree generated by C4.5 algorithm was much higher than the rest. As seen from results, data mining techniques can contribute to breast cancer diagnosis performance by predicting the breast cancer class for each case.

Keywords: Breast cancer in Egypt, Medical Data Mining, Classification, Decision Tree, WEKA, RandomTree, C4.5, REPTree, SimpleCart.