
Compunet 18 - 19 (March 2017)

Efficient Solution for Detection
and Prevention of

SQL Injection Attacks
(Wave system technique)

1. Introduction
Modern era is totally dependent on technology and

one of technology’s most important aspects that affect
the individual’s day to day life is web applications and
their data bases. Therefore securing the transaction done
through these web applications is extremely important
up till now the security level is considered weak and the
main weakness is related to the process of identifying the
user. An unauthorized user can easily access the sys-
tem by via SQL injection input which is considered the
weak point in the security of the web applications thus
we are going to try and shed the light through survey Of
the vulnerabilities of the attacks on the different types of
SQL injection attacks and also on the techniques of their
prevention and how to detect them in the first place. We
also have to mention the new kind of attack called WAVE
system tool.

Section 2 in this paper presents the types of SQL injec-
tion attacks and techniques to prevent those attacks from
hacking, section 3 shows the steps involved in the pro-
cess of static slicing, section 4 shows Architecture and
the experimental testing wave system, vulnerabilities de-
tected by The WAVE System, RIPS tool and YASCA tool
also shows the result of the questionnaire and survey,
section 5 shows the Result, section 6 show the conclu-
sion, section 7 shows the future work.

2. Types of SQL injection attacks

There are different methods of attacks that depend on

Abstract
SQL Injection attacks are one of the
most common threats on web applica-
tions that refer to an attacker who can
use vulnerability to bypass authentica-
tion for retrieving the contents of an en-
tire database then create, delete, update
or drop the whole structure. There are
many methods used to repel these at-
tacks but none of these methods have
proved to work on detecting and pre-
venting all types of SQL injection at-
tacks which means specific method for
a certain particular type. The aim of this
research is to present a new method to
detect and prevent the largest number
of these attacks and test it against the
50 codes written by PHP and HTML lan-
guages Analysis and comparison have
been carried out between the exist-
ing solutions YASCA, RIPS and WAVE,
questionnaires were completed by ex-
perts such as developers and database
administrators and identification of the
actual risks behind these threats have
all helped in addressing the best meth-
od to use in securing websites.
Keywords: SQL Injection, Attack, Prevention-Detec-
tion, vulnerability attack. Threats, SQLIA..

Mona Medhat
Teaching Assistant at

Management Information
Systems Department,

Higher Institute For Specific
Studies, Cairo, Egypt

Christina Albert
Assistant Professor at Com-

puter and Information System
Department, Sadat Academy

for Management Science,
Cairo, Egypt

Mohamed M. EL HADI
Professor at Computer and

Information Systems Depart-
ment, Sadat Academy for

Management Science,
Cairo, Egypt

13

Compunet 18 - 19 (March 2017)

the goal of the attacker. For a successful SQLIA the at-
tacker should append on a syntactically correct command
to the original SQL query and types of SQL as follows: -

• Tautologies: This type of attack injects SQL tokens to
the conditional query statement to be evaluated always
true (Halfond, Viegas, &Ors 2006)

• Illegal/Logically Incorrect Queries: When a query is
rejected, an error message is returned from the data-
base including useful debugging information. This error
message helps the attacker to find vulnerable parameters
in the application and consequently database of the ap-
plication (Su &Wassermann, 2006).

• Union Query: In this type of attack, intruders exploit
database by the query delimiter such as “;” to append ex-
tra query to the original query. With a successful attack,
database receives and executes a multiple distinct que-
ries. Normally the first query is a legitimate query, where-
as the following queries could be illegitimate (Halfond,
Viegas, &Orso, 2006)

• Stored Procedure: In this Technique, attacker focuses
on the stored procedures which are present in the data-
base system .Stord procedures run directly by the data-
base engine. stored procedures is nothing but a code and
it can be vulnerable as program code for authorized and
unauthorized user the stored procedure return true/false

• Alternate Encodings: In this technique attackers modi-
fy the injection query by using alternate encoding such as
hexadecimal, ASCII, and Unicode. Because by this way
they can escape from developer’s filter which scan input
queries for special known “bad character”.

• Inference: By this type of attack intruders change the
behaviour of a database or application. There are two
well-known attack techniques that are based on infer-
ence blind-injection and timing attacks (Motamedi, & Ak-
bari, 2009)

• Blind Injection: Sometimes developers hide the error
details which help attackers to compromise the database.
So the SQLIA would be more difficult but not impossible.
An attacker can still steal data by asking a series of true/
false questions through SQL statements.

• Timing Attacks: A timing attack lets the attacker gath-
ers the information from the database by observing timing
delays in the database’s responses. This technique uses

an if-then statement for injecting queries. WAITFOR is a
keyword along the branches which causes the database
to delay its response by a specified time.

3. Techniques for prevention and Detection website Ap-
plication from SQL Injection Attacks

Researchers have proposed a wide range of techniques
to address the problem of SQL injection. These techniques
range from developing best practices to fully automated
tools for detecting and preventing SQLIAs. In this section,
these proposed tools will be reviewed, summarized and
the advantages and disadvantages associated with each
tool will be highlighted (Sharifian, Motamedi, & Akbari,
2009). It is noticeable that there are more techniques that
have not yet been implemented as a tool.

• In SQL Guard and SQL Check queries are checked at
runtime based on a model which is expressed as a gram-
mar that only accepts legal queries. SQL Guard exam-
ines the structure of the query before and after the addi-
tion of user-input based on the model. In SQL Check the
model is specified independently by the developer. Both
approaches use a secret key to delimit user input during
parsing by the runtime checker, thus security of the ap-
proach is dependent on attackers not being able to dis-
cover the key. In both approaches developers are be able
to modify the code to use a special intermediate library or
manually insert special markers into the code where user
input is added to a dynamically generated query.

• Signature Approach: Signature Approach as it appears
from its name is based on the signature thus the injec-
tion is caused through validating the input. This approach
uses Hirschberg algorithm to check the statements from
specifications versus the one from a hotspot. There are
three modules to do so and they are as follows:-

Monitoring module: This depends on the relation of the
input taken from web application sent to the module for
matching and in case of mismatch an error message is
sent and the transaction is blocked.

Specification predefined: key words are stored in the
database against which we check the input (Xi-Rong Wu;
&Chan, P.P.K., 2012).

Analysis Module:-It uses Hirschberg algorithm to
compare an input taken from monitoring Module with a
hotspot.

14

Compunet 18 - 19 (March 2017)

• DIWEDA Approach as well as ROICHMAN is mainly a
framework to identify SQL injection and business logic
violation and that is through IDS (Intrusions detection
system) for backend database. Therefore DIWEDA is con-
sidered a prototype that works at the session level and
not SQL statement.

• SAFELL: is static analysis framework that aims to de-
tect the vulnerability of the SQL analysis and its target is
to identify the SQL injection attack at the compile time.
SAFELL has two assets the first one is the analysis of
black box testing which takes into consideration the byte
code and track string. Second one deals with Boolean
integer and string variable because it depends on hybrid
constraint solver that is considered a strong string analy-
sis tool.

• Black box testing: protects against SQL injection at-
tacks through machine learning techniques (Dharam, R.;
Shiva, S.G., 2012). This is done by defining the points that
are considered vulnerable to attacks and that is through
web crawler. However the main disadvantage is that is
does not secure total protection.

• JBBC-checker: This is considered a limited technique
because it only covers tautologies and cannot protect
other kinds of attack. In other words it detects the mis-
matches injection and also protects against them but it
is limited to that.

• Combined static and dynamic analysis AMNESIA: is
technique that combines dynamic and static analysis for
detecting and preventing web application vulnerabilities
at run time .AMNESIA uses static analysis to generate
different types of query statement. In the dynamic phase
AMNESA interprets all queries before they are sent to the
database and validates each query against the statically
built model. AMNESA stops al queries before they are
sent the database and validates each query statement
against the AMNESA models

Analysis module: this kind of modules have java ap-
plications as input and a group of hotspots as an output
having a SQL query for each on of then. This is done in
two steps:-Instrumentation module: it is the next tech-
nique in line where the java web application is the in-
put and the group of hotspots are linked to the runtime
monitors. Runtime monitoring module: this module comes
next. It recalls the SQL Query model for a hotspot and

compares it with the query model. This is done after tak-
ing a query string and ID of the hotspot as an input (Scott
& Sharp, 2003).

• Identify hotspots: this is done by identifying through
scanning and thus declares the application code as issue
SQL queries to the underlying database.

• Build SQL query models this depends on building a
model that carries all the SQL queries that would possibly
be produced at certain hotspots.

• SQL query model: is automated non deterministic finite
state. The transaction is a label that is composed of SQL
tokens. Delimiters and place holders for string values.

• Limitation: the result of these techniques is either false
positive and false negative thus its forte relies on the built
model (Wassermann, Gould & Su, 2004).

• SQL DOM: Framework that is represented by McClure
and Kruge, they estimate from the existing flow while ac-
cessing relation database from object oriented program-
ming languages. They focus on with the database SQL
DOM object model is design to take these through build-
ing a secure environment for communication.

• SQL RAND (Randomization based method): we can
express “randomize SQL as parts of the query generated
by an application and use correctly randomize in SQL to
detect attacks. SQL RAND creates instance of language
that are unpredictable to the attacker. One that the at-
tacker can’t easily guess we define de-randomization
proxy which converts randomized query to proper SQL
query for database. Our design consist of a proxy that
sits between the client and database server proxy may
be on a separate machine by moving de-randomization
process outside DBMS to the proxy we gain that flexibil-
ity, simplicity and security.

• WebSSARI: uses static analysis to check taint flows
against preconditions for sensitive functions. It works
based on sanitized input that has passed through a pre-
defined set of filters. The limitation of this approach is
adequate preconditions for sensitive functions cannot
be accurately expressed so some filters may be omitted
(Bandhakavi, Bisht, & Madhusudan, 2007).

• SecuriFly: is another tool that was implemented for
java. Despite other tools chasing string instead of char-
acter for taint information, Security Fly tries to sanitize

15

Compunet 18 - 19 (March 2017)

query strings that have been generated using tainted in-
put but unfortunately injection in numeric fields cannot be
stopped by this approach. Because difficulty of identifying
all sources of user input is the main limitations of this ap-
proach (Martin, Livshits, and Lam, 2009).

• Positive tainting: not only focuses on positive taint-
ing rather than negative tainting but also it is automated
and does not need developer intervention. Moreover this
approach benefits from syntax-aware evaluation which
gives developers a mechanism to regulate the usage of
string data based not only on its source but also on its
syntactical role in a query string.

• Intrusion Detection System (IDS) is based on a ma-
chine learning technique. That is trained using a set of
typical application queries. the technique builds models
of the typical queries and then monitoring the applica-
tion at runtime to identify queries that do not match the
model. In their evaluation, valeure and colleagues have
shown that their system is able to detect attacks with a
high rate of success however; the fundamental limitation
of learning based techniques is that they can provide no
guarantees about their detection abilities because their
success is dependent on the quality if the training set
used. A poor training set would cause the quality of the
learning technique to generate a large number of false
positive and negatives.

• Swaddler analysis: the internal state of a web applica-
tion. It works based on both single and multiple variables
and shows an impressive way against complex attacks
to web applications. First the approach describes the nor-
mal values for the application’s state variables in critical
points of the application’s components. Then, during the
detection phase it monitors the application’s execution to
identify abnormal states (Cova, M, Balzarotti, D., 2012).

• RIPS: is a tool written in PHP to find vulnerabilities in
PHP applications, using static code analysis by tokeniz-
ing and parsing all source code files. RIPS has the ability
to transform PHP source code into program flow.

• Wave system techniques (web application vulnerabil-
ity Extractor)

• Algorithm for Detecting and preventing website Appli-
cation from SQL injection attacks

An efferent algorithm for detecting and preventing SQL

Injection Attacks is based on wave system .the planned
architecture is given in fig(1) The main wave system of
architecture is the predictive parser which is the stack,
that manipulates the tokens according to the information
in the predicative context free grammar table and pars-
ing table. The parser utilizes the stack to store the pro-
duction rule associated with the current token. This rule
will serve to define the appropriate production rule for the
next token. Given a new token, the parser check the pars-
ing table for the appropriate production rule according to
the non-terminal exist on the stack top. Accordingly, the
stack will be updated with the new production rules after
popping the non-terminal from it. The predicative context
free grammar is a list containing the productions rules of
the PHP web programming language. The parsing table
is created from the predicative context free grammar. It
stores the actions that the parser should take based on
the input token and the value on the stack top.

Figure 1: wave system Architecture
o The procedure of proposed model (wave) system
 A) Static Slicing:
Static slicing is the approach to analyse the code sta-

tistically to isolate specific statements. In general, static
slicing process isolates the statements which attain vul-
nerabilities directly or indirectly. The process extracts
a partition of the program or a set of nodes that directly
or indirectly affect the value of the set of variables{V} at
a specific point in the program ‘S’. The specific point is
known as the cut point, whereas, the extracted portion is
called a slice. The slicing criterion is denoted by (S, { V})
where ‘S’ is a statement, node or line number and {V} is
the set of program variables under study [Surendran et
al., 2013].

Detecting web security input vulnerabilities requires

16

Compunet 18 - 19 (March 2017)

checking the entire code of the
Application. Therefore ‘S’ will represent the last state-

ment of the code and ‘V’ is the set of input variables and
their influenced variables. Direct input variables are
those whose values are obtained from the user (user in-
puts). The direct input are, normally, hold in special ar-
rays called $_GET, $_POST, $_REQUEST and $_COOK-
IE. The influenced variables are those whose values were
defined (directly or indirectly) by direct input, and those
whose execution are controlled (directly or indirectly) by
any variable in {V}. The slicer manipulates the generated
define-use chain in the form of linked lists as well as the
decision nodes linked list to extract the code slice. The
static slice of the code is presented as linked list. Where-
as the Constrained Slicer optimizes the extracted slice to
obtain the slice of the slice which is a set of vulnerable
instructions (code statements). Figure.2 shows the steps
involved in the process of static slicing.

Figure 2: steps involved in the process of static slicing.

 B) Defined-Use Chain Table

Defined-Use chain of a given variable v, describes the
list of definition nodes of v, and the associated use nodes
of the corresponding reaching definitions.

The Defined-Use chain is represented in a simple linked
list data structure as shown in Figure 3.

Figure.3: Data Structure for Defined-Use Chain

c) Defined-Use Chain Extraction

The define-use chain extractor function uses the defini-
tion table and use table in order to generate the define-
use chain. (M. Salah, 2014)

For the purpose of obtaining the data influence of the in-
put variable(s), the code should be analyzed up to its last
statement. Therefore the slicing node is selected to be the
last node of the program. The best structure for storing
the file slice is a simple data linked list. 4. Extracting the
Slice from Define-Use Chain

The function that is reasonable for creating the code
slice is called Slicer. The Slicer function initializes the
slice with those nodes that contains external data vari-
ables (data comes from the user) Afterword it delivers the
slice by repeating the following steps until saturation.

• Add to the slice the definition nodes of any variable
that has been used in the slice.

• Add to the slice the decision nodes that any of the
statements in the slice is in its scope.

D) Slicing the Slice

Slicing the slice (STS) is second iteration which made
over the slice obtained by applying static slicing. STS
extracts, only, the statements that contain direct or indi-
rect input variables by applying data influence over input
variables.

17

Compunet 18 - 19 (March 2017)

Figure 4: Block Diagram for the Slicer Processes

 STS is the set of nodes that will reflect any data vulner-
abilities that should need remedies recommendations.

e) Extracting the STS from the PHP Code

Figure 5: Block Diagram for the STS Processes

Figure 6: Block Diagram for Vulnerability Extractor
f) Vulnerability Extraction

This section discusses the detection of the vulnerabili-
ties using the proposed system. The analysis of the PHP
code to extract its vulnerabilities and provides some
remedies using the proposed system will be shown. The
resolved code will be exercised with real time attack to
obtain the effect of the diagnosed deficiencies and its
remedies. Figure 6: shows the block diagram of the vul-
nerability extractor, which manipulates the client side
code and the derived slice of the slice (STS) as inputs
and analyze them to extract a list of vulnerabilities and
recommendations.(M. Salah, 2014)

The vulnerabilities of the PHP code will be extracted
and a remedy for it will be recommended according to

each vulnerability type. This will be accomplished by
exercising the code through the proposed WAVE system,
which isolates the statements that causes its vulnerabili-
ties. The code will processed to obtain the static slice,
which, is refined more to obtain the precise vulnerability
list. A recommendation remedy is provided to mend the
statement in the vulnerability list. In the next subsec-
tions, the technique of detecting each of the web security
vulnerabilities will be introduced.

 4- Results from testing Evaluation
 4.1. Testing the WAVE System
The WAVE system was exercised by running it with the

prepared test suite. It detects 80 vulnerabilities as shown
in Table 1 and Figure 3 the entries in the table signify the
number of vulnerabilities detected and extracted by the
WAVE system. The columns presents the type of vulner-
ability, while, the rows show the category of the tested
code.

Table 1: The Vulnerabilities Detected By the WAVE System

Figure 7: The Vulnerabilities Detected By the WAVE System

Table 2: Vulnerabilities Detected by WAVE System, RIPS
Tool and YASCA Tool

18

Compunet 18 - 19 (March 2017)

Figure 8: Vulnerabilities Detected By WAVE System, RIPS

Tool and YASCA Tools

 4.2. Questionnaire Design and Evaluation

This study is both an analytical and afield study. The ana-

lytical part aims at choosing the best existing method to pre-

vent hacking on web application. The choice of the suitable

preventing method depends on: security, securing code and

time management. The field study depends on a number of

questions concerning using SQL and protecting web appli-

cation against SQL injection. The questions were answered

by (81) programmers, web developer, senior web developer

and DB admin. (100 questionnaires were handed out). Their

answers were analyzed and the result and recommendation

as seen from the table:

Table 3: analyzed and the result and recommendation

 5. Conclusion

It is difficult to objectively create test codes for the
static analysis tools because there is no widely agreed-
upon yardstick for comparing results. The most common

method to evaluate a static analysis tool is to run it on a
series of real-world applications and manually inspect
the results.

A test suite (set of PHP codes) has been used to evalu-
ate the results of the designed WAVE system. It consists
of codes varying in size and complexity. The selection
of the test codes were made without any bias towards
a specific static analysis tool. The WAVE system was
exercised by running it with the prepared test suite. It
detects 87 vulnerabilities.YASCA tool can’t detect the
web vulnerabilities in code that contain indirect input
variable. Both RIPS and YASCA tools ignored the cross
site script vulnerability, which occurs due to outputting
to a database. They also ignored the SQL injection vul-
nerability when vulnerable SQL statement did not pass
to the database in the same PHP page. This section is
a comparison of the RIPS, YASCA, and WAVES tools as
far as the ability of each of them to discover and pre-
vent different vulnerabilities (name of injection) is con-
cerned. Each tool is applied on 50 injected codes. 28
codes are obtained from websites, 11 codes are written
for testing purpose and 10 are taken from different re-
search papers. They are all complex codes, which help
in testing and evaluating how successful the tool is in
detecting and preventing vulnerabilities. The most com-
mon method to evaluate a static analysis tools is to run
it on a series of real world application and manually
inspect the result. In addition, the section explains the
way each tool analyses the codes showing their strong
and weak points. Accordingly,

it achieves some recommendation to clarify the best
tool to prevent websites from different vulnerabilities. In
this chapter, 50 codes are examined by three methods
WAVE, RIPS and YASCA the following was observed.
The YASCA method has merely detected 6 code injec-
tions from a total of 50 codes two of these 6 codes were
SQL injection and 4 of them were cross- site script. The
RIPS method has only detected 4 codes for total of 50
codes. Indeed the four of them were SQL injection. The
WAVE method has detected 80 there was a wide range
of vulnerabilities such as cross-site script, buffer over

19

Compunet 18 - 19 (March 2017)

flow, SQL injection, legal query and stored procedure.

When it comes to the YASCA method, the YASCA tool

is focused on direct input variable, regular expression,

and patterns. So it can detect vulnerabilities related

to these methods. However, a major weak point in the

YASCA is that it does not follow the path of the vari-

able. This can cause a problem to the server because

the variable can inject it.

 6. Future work

The WAVE system could be extended to support other

web programming language such as ASP and JSP. This

could be accomplished by generating data influence

tables from the parse tree of their front-end compilers.

The WAVE system could, also, be adapted to support

multiple pages and object oriented programming. While,

the presented WAVE system adopted a static approach

(static slicing technique) to expose the vulnerabilities

of PHP code, a dynamic approach for detection of vul-

nerabilities is an open research area, dynamic analysis

techniques could play a great role in security assur-

ance.

 7-References

1-Bandhakavi, S, Bisht, P., & Madhusudan, P (2007)

CANDID: Preventing SQL Injection Attacks using Dy-

namic Candidate Evaluations, USA, ACM.

2- Halfond, W., Viegas. J & Orso, A.(2006) “A Classifi-

cation of SQL Injection Attacks and Countermeasures,”

College of Computing Georgia Institute of Technology

IEEE.

3- Milne, G. R., L. I. Labrecque & C. Cromer.(2009.)

“Toward an understanding of the online consumer’s

risky behaviour and protection practices.” Journal of

Consumer Affairs 43(3): 449-473.

4- Scott, D and Sharp, R., (2003) Abstracting Appli-

cation-level Web Security. IEEE---Transactions on

Knowledge and Data Engineering (Volume: 15, Issue: 4)

5- Wassermann, G; Gould, C; Su, Z, et al, (2004)”

Static Checking of Dynamically Generated Queries in

Database Applications,”(Volume: 16, Issue) ACM Trans-
actions on Software Engineering and Methodology.

6-[Surrendering, 2013] Surrendering, A.; Samuel, P.
and Poulose, K.“Code Clones in Program Test Sequence
Identification”, International Journal of Computer Infor-
mation Systems and Industrial Management Applica-
tions, Pages 564-570, India, 2013.

7--Halfond, W. G. J. & Orso, A. (2006) “Preventing SQL
injection attacks using AMNESIA,” presented at the Pro-
ceedings of the 28th international conference on Soft-
ware engineering, Shanghai, China.

8-Martin, M. Livshits, B. & Lam, M (2009) Finding Ap-
plication Errors and Security Flaws Using PQL (Vol: 40,
Iss: 10, pp: 365-383): A Program Query Language,”ACM
SIGPLAN Notices.

9-Sharifian,S., Motamedi, S., & Akbari, M.,(Eds.).(2009).
Estimation-Based Load-Balancing with Admission
Control for Cluster Web Servers,” ETRI Journal, vol.31,
pp.173-181.

10-Su .Z., &. Wassermann, G. (2006) “The Essence of
Command Injection Attacks in Web Applications”. (Vol-
ume: 41, pp: 372-382) ACM SIGPLAN Notices.

11- Salah, M. (2014) Verification of Web Applications
Vulnerabilities, Institute of Statistical Studies & Re-
search Cairo University, Egypt.

12- Cova, M, Balzarotti, D., (2012) “Swaddler: An Ap-
proach for the Anomaly-based Detection of State Viola-
tions in Web Applications”(Volume: 4637, pp: 63-Recent
Advances in Intrusion Detection, Proceedings.

13-Xi-Rong Wu; Chan, P.P.K.,(2012 July 17) “SQL in-
jection attacks detection in adversarial environments by
k-centers,” Machine Learning and Cybernetics,(ICMLC),
International Conference on , vol.1, no., pp.406, 410.

14-Dharam, R.; Shiva, S.G.,(2012) “Runtime monitors
for tautology based SQL injection attacks,” Cyber Se-
curity, Cyber Warfare and Digital Forensic (Cyber Sec)
International Conference on , vol., no., pp.253,258, 26-28
June .

20

