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Hadoop and Spark are the two most popular plat-

forms for Big Data processing. They both enable 

you to deal with huge collections of data no matter 

its format — from Excel tables to user feedback on 

websites to images and video files. But which one 

Hadoop vs Spark - 
Main Big Data Tools 

Explained

of the celebrities should you entrust your informa-

tion assets to?

To come to the right decision, we must divide this 

big question into several smaller ones:

• What is Hadoop?

• How does it work?

• What are its limitations and how does the Hadoop 

ecosystem address them?

• Why did the need for Spark arise at all?

• Which Big Data tasks does Spark solve most ef-

fectively?

• What should you know about Spark cons?

This article gives you all the answers, one by one. 

If you already know some of them — no big deal! 

Skip to the next section and add to your personal 
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knowledge base. The table below summarizes core 
differences between the two platforms in question.

 

Hadoop vs Spark differences summarized.

What is Hadoop?
Apache Hadoop is an open-source framework writ-
ten in Java for distributed storage and processing 
of huge datasets. The keyword here is distributed 
since the data quantities in question are too large 
to be accommodated and analyzed by a single 
computer.
The framework provides a way to divide a huge 

data collection into smaller chunks and shove 
them across interconnected computers or nodes 
that make up a Hadoop cluster. As a result, a Big 
Data analytics task is split up, with each machine 
performing its own little part in parallel. Still, an 
end-user sees all the fragments as a single unit.
Hadoop hides away the complexities of distributed 
computing, offering an abstracted API to get direct 
access to the system’s functionality and its ben-
efits:
• scalability. You can quickly add new nodes to the 
cluster, scaling it up from a single computer for 
proof-of-concept to hundreds of machines. Hadoop 
puts virtually no limits on the storage capacity.
• versatility. Hadoop allows you to leverage data 
from multiple sources and in different formats, both 
structured and unstructured. You don’t need to ar-
chive or clean data before loading.
• cost-effectiveness. Hadoop works on low-cost, 
commodity hardware, making it relatively cheap to 
maintain.
• fail-safe design. The system automatically repli-
cates information to prevent data loss in the case 
of a node failure.
To understand how the entire mechanism works, 
we need to get familiar with Hadoop structure and 
key parts.

Hadoop architecture, or how the frame-
work works
There are two ways to deploy Hadoop — as a sin-
gle-node cluster or as a multi-node cluster. In the 
former, the framework is set up on one virtual ma-
chine, which is preferable for the evaluation or test 
phase.
In the latter, more common, scenario, each node 
runs on a separate virtual machine. Obviously, Big 

Data processing involves hundreds of computing 

units. So, further reading refers to a multi-node de-

ployment option.

Hadoop nodes: masters and slaves
Not all the nodes in the Hadoop clusters are the 
same. Their role determines which of the three 
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groups they fall into.
Master Nodes control and coordinate two key 
functions of Hadoop: data storage and parallel 
processing of data. Physically, they require the 
best hardware resources available.
Worker or Slave Nodes are the majority of nodes 
used to store data and run computations according 
to instructions from a master node.
A Client Node also called a Gateway or Edge Node 
acts as an interface between a Hadoop cluster and 
an outside network. It doesn’t belong to the mas-
ter-slave paradigm, being responsible for loading 
data into the cluster, describing how the data must 
be processed, and retrieving the output.
Each Hadoop cluster has three functional layers:
• the storage layer created by Hadoop’s native file 
system — HDFS,
• the resource management layer represented by 
YARN, and
• the processing layer called MapReduce.
All Hadoop layers are built around master/worker 
interactions — or, in other words, include master 
and slave nodes. Let’s explore how they work in 
more detail.

Hadoop cluster layers and nodes. 

HDFS: a storage layer
The backbone of the framework, Hadoop Distrib-

uted File System (HDFS for short) stores and man-
ages data that is split into blocks across numerous 
computers. By default, the block size in Hadoop is 
128MB, but this can be easily changed in the config 
file.
HDFS works on the “write once, read many times” 
principle. A file stored in the system can’t be modi-
fied but it can be analyzed for different purposes 
again and again. Following this approach, the tool 
focuses on fast retrieval of the whole data set 
rather than on the speed of the storing process or 
fetching a single record.
Each block of HDFS is automatically replicated in 
different worker nodes to ensure fault tolerance. 
If a node with required data fails, you can always 
make use of a backup. The recommended number 
of replicas is three, with “no more than one copy on 
the same node and no more than two copies in the 
same rack.”
HDFS master-slave structure
An HDFS Master Node, called a NameNode, keeps 
metadata with critical information about system 
files (like their names, locations, number of data 
blocks in the file, etc.) and keeps track of storage 
capacity, the volume of data being transferred, etc.
Multiple Worker Nodes — DataNodes — house 
blocks of large files. Every three seconds workers 
send signals to their master to inform it that every-
thing goes well and data is ready to be accessed.
DataNodes are organized in racks of 40-50 nodes 
connected to the same network switch.
YARN: a resource management layer
An acronym for Yet Another Resource Negotia-
tor, YARN is a software layer that monitors the 
usage of CPU, memory, and disk space, allocates 
resources to running applications, and schedules 
jobs based on the application requirements.
YARN master-slave structure
A ResourceManager serves as a Master Node and 
has ultimate authority over resources in the sys-
tem.
Multiple slaves — NodeManagers — monitor re-
sources of each virtual machine, reporting results 
to the ResourceManager.
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MapReduce: a processing layer
MapReduce is often recognized as the best solu-
tion for batch processing, when files gathered over 
a period of time are automatically handled as a 
single group or batch.
The entire job is divided into two phases: map and 
reduce (hence the name.) Map operations deal with 
data filtering, sorting, and splitting while the Re-
duce stage takes care of aggregating and summa-
rizing results.
This approach fits companies that want to extract 
detailed insights from large data volumes — rather 
than to get fast analytics results in real-time.
MapReduce master-slave structure
A Master Node known as a JobTracker receives 
client requests via a client node, connects with the 
NameNode to find out the data location, assigns 
tasks to slave nodes and keeps the client informed 
about the job status.
Slave Nodes or TaskTrackers perform map and 
reduce tasks according to the JobTracker instruc-
tions. Similar to DataNodes, they are constantly in-
forming their Master Node on the execution prog-
ress.

Hadoop limitations
A powerful Big Data tool, Apache Hadoop alone 
is far from being all-powerful. It has multiple limi-
tations. Below we list the greatest drawbacks of 
Hadoop.
Small file problem. Hadoop was created to deal 
with huge datasets rather than with a large number 
of files extremely smaller than the default size of 
128 MB. For every data unit, the NameNode has 
to store metadata with names, access rights, loca-
tions, and so on. Millions of small files will evident-
ly occupy too much memory in the Master Nodes 
and create lots of tasks that will slow down the 
processing.
High latency of data access. Hadoop ensures high 
throughput which means the system’s ability to de-
liver large data batches. But this comes at the ex-
pense of latency — or delay between user action 
and system response. In other words, it will take 

relatively long to find and retrieve a single record. 
High latency makes Hadoop unsuitable for tasks 
that require nearly real-time data access.
No real-time data processing. MapReduce per-
forms batch processing only and doesn’t fit time-
sensitive data or real-time analytics jobs.
Complex programming environment. Data engi-
neers who previously worked only with relational 
database management systems and SQL queries 
need training to take advantage of Hadoop. They 
have to know Java to go deep in Hadoop coding 
and effectively use features available via Java 
APIs. It’s also important to understand the core 
principles behind Hadoop.

Apache Hadoop ecosystem
These pitfalls along with the need to cover an end-
to-end Big Data workflow prompted the emergence 
of various additional services, compatible with 
each other. Together, they create a Hadoop eco-
system — a large suite of tools supplementing the 
framework and addressing its limitations.

Some components of the Hadoop ecosystem.
Data storage options
Apache HBase, a noSQL database on top of HDFS, 
is designed to store huge tables, with millions of 
columns and billions of rows. Its in-memory pro-
cessing engine allows for quick, real-time access 
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to data stored in HDFS.
Alternatively, you can opt for Apache Cassandra 
— one more noSQL database in the family. Unlike 
HBase, it’s a self-sufficient technology and has its 
own SQL-like language — Cassandra Query Lan-
guage. Cassandra excels at streaming data analy-
sis.
Data access options
HBase is often paired with Apache Phoenix, which 
translates common SQL queries into specific 
HBase commands (scans) and runs them in paral-
lel.
There are other tools like Apache Pig and Apache 
Hive that simplify the use of Hadoop and HBase for 
data experts who typically know SQL.
Pig, developed by Yahoo, provides an SQL-like 
scripting language to express data flows known 
as Pig Latin (not to be confused with the childhood  
word game!) It works for all types of data — un-
structured, semi-structured, and structured. But 
the best part of it is that you can describe a Ma-
pReduce operation with only 10 lines of Pig Latin 
code — instead of 200 lines in Java.
Hive, created at Facebook is a kind of query en-
gine, utilizing the query-processing language Hive 
QL, that is also very similar to SQL. Main users of 
Hive are data analysts who work with structured 
data stored in the HDFS or HBase.
Data management and monitoring options
Among solutions facilitation data management are
• Apache Sqoop, which facilitates data transfer be-
tween Hadoop and relational databases;
• Apache ZooKeeper to coordinate operations and 
keep track of metadata in HBase;
• Apache Oozie for scheduling Hadoop jobs;
• Apache Flume to aggregate massive quantities of 
log data and move them to HDFS for analysis; and
• Apache Ambari, enabling administrators to moni-
tor and control every application running on a Ha-
doop cluster via a highly interactive dashboard.
Processing options
Hadoop uses Apache Mahout to run machine 
learning algorithms for clustering, classification, 
and other tasks on top of MapReduce.

Of course, it’s by far not all components of the eco-
system that has grown around Hadoop. Yet, for 
now, its most highly-sought satellite is data pro-
cessing engine Apache Spark. This big star of the 
Big Data world was born from the need to process 
data much faster than MapReduce.

What is Apache Spark: its key concepts, compo-

nents, and benefits over Hadoop
Designed specifically to replace MapReduce, 
Spark also processes data in batches, with work-
loads distributed across a cluster of interconnect-
ed servers.
Similar to its predecessor, the engine supports 
single- and multi-node deployment scenarios and 
master-slave architecture. Each Spark cluster has 
a single master node or driver to manage tasks and 
numerous slaves or executors to perform opera-
tions. And that’s almost where the likeness ends.
The main difference between Hadoop and Spark 
lies in data processing methods.
MapReduce stores intermediate results on local 
discs and reads them later for further calculations. 
In contrast, Spark caches data in the main com-
puter memory or RAM (Random Access Memory.)
Even the best possible disk read time lags far be-
hind RAM speeds. Not a big surprise that Spark 
runs workloads 100 times faster than MapReduce 
if all data fits in RAM. When datasets are so large 
or queries are so complex that they have to be 
saved to disc, Spark still outperforms the Hadoop 
engine by ten times.

Key components of Spark and additional tools to 
run it.
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Below, we’ll explore key components of Apache 
Spark and what else makes it different from Ha-
doop besides in-memory data processing.

Spark Core and distributed data structures
The heart of the framework is its computational en-
gine known as Spark Core. It is responsible for
• distributed data processing,
• memory management,
• task scheduling,
• fault recovery, and
• communications with an external cluster man-
ager and data repository.
The fundamental data structure Spark Core works 
with is Resilient Distributed Dataset (RDD.) Basi-
cally, it’s a read-only and fault-tolerant collection 
of records that can be processed in parallel, hiding 
partitioning from an end-user. RDD easily handles 
both structured and unstructured data.
Another available schema — DataFrames — is used 
to organize information in the named columns, 
similar to tables in relational databases.
Its extension called Datasets merges benefits of 
the two previous models. It supports all types of 
data like RDD and at the same time allows for per-
forming SQL queries — though it happens  more 
slowly than with DataFrames.
No default storage system and resource man-
ager
Unlike Hadoop, which unites storing, processing, 
and resource management capabilities, Spark is 
for processing only, having no native storage sys-
tem. Instead, it can read and write data from/to dif-
ferent sources, including but not limited to HDFS, 
HBase, and Apache Cassandra. It is compatible 
with a plethora of other data repositories, outside 
the Hadoop ecosystem — say, Amazon S3.
Processing data across multiple servers, Spark 
couldn’t control resources — mainly, CPU and mem-
ory — by itself. For this task, it needs a resource 

or cluster manager. Currently, the framework sup-
ports four options:
• Standalone, a simple pre-built cluster manager;
• Hadoop YARN, which is the most common choice 
for Spark;
• Apache Mesos, used to control resources of en-
tire data centers and heavy-duty services; and
• Kubernetes, a container orchestration platform.
Running Spark on Kubernetes makes sense if a 
company plans to move the entire company tech-
stack to the cloud-native infrastructure.
Native libraries: Spark Streaming, Spark SQL, 
MLlib, and GraphX
While using an external cluster manager and data 
repository, Spark comes with a stack of four librar-
ies that allow for creating various analytics apps 
on top of a single platform.
Spark Streaming empowers the core engine with 
near-real-time processing capabilities and facili-
tates building streaming analytics products. The 
module can absorb live data streams from Apache 
Kafka, Apache Flume, Amazon Kinesis, Twitter, 
and other sources and process them as micro-
batches.
Just for reference, Spark Streaming and Kafka are 
used by
• Uber for telematics analytics;
• Pinterest for analyzing user behavior globally, 
and
• Netflix for near real-time movie recommenda-
tions.
Spark SQL creates a communication layer be-
tween RDDs and relational databases. It allows 
data scientists to conveniently query structured 
data in Spark programs.
GraphX offers a set of operators and algorithms to 
run analytics on graph data.
MLlib is a scalable machine learning library, con-
taining algorithms for a range of ML tasks such as 
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classification, clustering, and regression. It also 
provides tools for statistics, creating ML pipelines, 
model evaluation, and more.
Multi-language intuitive APIs
Spark core engine, data structures, and libraries 
are available via developer-friendly APIs. Writ-
ten in Scala, the framework also supports Java, 
Python, and R. This makes it easy to learn for a 
wide range of experts with experience in the listed 
languages. As a result, companies can count on 
a wider pool of talent — compared to Java-centric 
Hadoop.
Spark limitations
Obviously, Spark has some advantages over Ha-
doop’s MapReduce engine. Yet, it also comes with 
certain drawbacks you should consider.
Pricey hardware. RAM prices are higher than those 
of hard discs exploited by MapReduce, making 
Spark operations more expensive.
Near, but not truly real-time processing. Spark 
Streaming and in-memory caching allow you to 
analyze data very quickly. But still it won’t be tru-
ly real-time, since the module works with micro-
batches — or small groups of events collected over 
a predefined interval. Genuine real-time process-
ing tools process data streams at the moment they 
are generated.
Owing to this fact, Spark doesn’t perfectly suit IoT 
solutions. You can find better tools for real-time 
analytics in the Apache portfolio. For example, 
Apache Flink was designed specifically to process 
live data. Apache Storm running over HBase can 
also handle real-time streams better than Spark.
Issues with small files. Like Hadoop, Spark doesn’t 
cope well with a large number of small datasets. 
More files within a workload mean more metadata 
to parse and more tasks to schedule, which can 
slow up the processing dramatically.
How to choose between Hadoop or 

Spark?
Strictly speaking, the choice is not between Spark 
and Hadoop, but between two processing engines, 
since Hadoop is more than that.
A clear advantage of MapReduce is that you can 
perform large, delay-tolerant processing tasks at 
a relatively low cost. It works best for archived 
data that can be analyzed later — say, during night 
hours. Some real-life use cases are
• online sentiment analysis to understand how 
people feel about your products;
• predictive maintenance to address issues with 
equipment before they really happen; and
• log files analysis to prevent security breaches.
Spark, in turn, shines when speed is prioritized 
over price. It’s a natural choice for
• fraud detection and prevention,
• stock market trends prediction,
• near real-time recommendation systems, and
• risk management.
Yet, other factors — like availability of experts — 
may also tip the scale. Besides that, the efficiency 
of Spark and Hadoop depends greatly on the right 
tools they are combined with.
Though Spark can do without Hadoop, it is com-
monly teamed with HDFS as a data repository and 
YARN as a resource manager. So, in many cases 
you will actually use both platforms. Moreover, 
many companies run two engines — MapReduce 
and Spark Core — for different Big Data tasks. The 
former undertakes heavier operations at a bargain 
price while the latter deals with smaller data batch-
es when quick analytics results are required.
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