
CompuNet 33 (December - 2023)

It wasn’t long ago when engineers configured

systems manually. In those days, developers

drafted procedural documents for administrators

to follow when deploying applications. Devops

tools and practices, including deploying with

CI/CD, configuring infrastructure as code, and

managing containerized systems, all enabled IT

teams to improve systems reliability, security, and

performance.

The result is that more devops teams could deploy

application changes and scale cloud infrastructure

Why Platform Engineering?

faster. Devops teams went from quarterly release

cycles to more continuous deployment practices,

and cloud engineers developed automations to

scale cloud infrastructure based on computing

demands.

Using devops practices, agile development teams

built and enhanced applications for mission-

critical workflows and revenue-generating

experiences. Developing microservices and

deploying to multicloud architectures provided

more flexibility but also increased the complexities

42

The shift from devops to platform engineering could be transformational. Here›s why and what›s

involved in making the leap.

CompuNet 33 (December - 2023)

when responding to outages, performance issues,

or other major incidents. Many organizations

adopted site reliability engineering (SRE) practices

and deployed AIops platforms to improve the

reliability and performance of their services and

applications.

TABLE OF CONTENTS

• IT struggles with broad devops adoption

• Platform engineering evolves devops

• Improving developer experience and

productivity

• Creating reusable, configurable, self-service

components

• Benefits of platform engineering

IT struggles with broad devops adoption

Maturing devops and SRE capabilities requires

significant investment in developing skills,

practices, and culture change. For CIOs and IT

leaders, two fundamental problems tend to emerge.

 0 seconds of 30 secondsVolume 0%

 First, many organizations struggle with technical

debt and skills gaps, so while their devops and

SRE practices are advanced, broad adoption is

more challenging. These organizations might

successfully build CI/CD and IaC for their cloud-

native and modernized applications, but they

struggle to leverage these capabilities into

standardized practices.

For more technically advanced organizations,

the issue is different. These organizations are

more likely to adopt self-organizing practices and

empower teams to configure devops tools specific

to their application architecture requirements

and implementation values. They may have

standardized platforms but each team uses the

tools differently. Thus, they deploy customized CI/

CD pipelines, IaC automations, cloud architectures,

and monitoring configurations.

For these organizations and their leaders, the

question is how to enable devops best practices

into repurposable patterns. More specifically,

how to empower agile teams to spend more time

developing applications and less time on cloud

configurations and automations.

Nominations are open for the 2024 Best Places to

Work in IT

Platform engineering evolves devops

Platform engineering is an evolution of devops

practices intended to help larger organizations

develop standards, support reusable

configurations, and deliver systems engineering

as an internal product capability.

“Platform engineering is a step forward in devops,”

says Marko Anastasov, co-founder of Semaphore

CI/CD. “Platform engineering enables developers

to follow devops practices more easily by creating

a “golden path” developers can use for rapid

application development.”

For large organizations, platform engineering

may require a separation of duties from the

developers who build applications to the platform

engineers who create devops-as-a-product. “A

43

CompuNet 33 (December - 2023)

platform engineer focuses on creating the means

for developers to self-service the tools, libraries,

and infrastructure they need to write applications,”

says Anastasov.

Improving developer experience and productivity

While simple in concept, platform engineering isn’t

trivial to execute because it requires a product

development mindset. Platform engineers must

develop a product that agile development teams

want to consume, and developers must let go

of their desires for DIY (do it yourself) devops

approaches.

One place to start is infrastructure and cloud

provisioning, where IT can benefit significantly from

standards, and developers are less likely to have

application-specific architectural requirements.

SponsoredPost Sponsored by Coventry University

Coventry University is a truly global university with

more than 13,000 international students from over

150 countries. And with campuses in Coventry and

London, you can choose the city location...

Donnie Berkholz, senior vice president of

product management at Percona, says, “Platform

engineering covers how teams can deliver the right

kind of developer experience using automation

and self-service, so developers can get to writing

code and implementing applications rather than

having to wait for infrastructure to be set up based

on a ticket request.”

Therein lies the customer pain point. If I am a

developer or data scientist who wants to code,

the last thing I want to do is open a ticket for

computing resources. But IT and security leaders

also want to avoid having developers customize

the infrastructure’s configuration, which can be

costly and create security vulnerabilities.

“Companies will adopt platform engineering

more because they care about their internal

developer experience. Anything that gets in the

way of developers is literally costing money when

those employees are less productive,” continues

Berkholz.

Creating reusable, configurable, self-service

components

One way to consider platform engineering is to

ask developers to fill in the following statement:

“My team can’t invest enough time to address

<technical concerns> because we’re spending time

developing, maintaining, or improving <technical

automations> and <infrastructure configurations>.”

Technical concerns are often expressed as

non-functional requirements, such as improving

testability, performance, scalability, and security

while reducing technical debt. These all improve

end-user experience with the application, and

many devops teams would like to devote more

time to these areas.

Contrast that with technical automations and

infrastructure configurations, in which building

basic capabilities can be a prerequisite to

software development, while ongoing investment

improves the development team’s productivity.

44

CompuNet 33 (December - 2023)

Unfortunately, the more time development teams

devote to these areas, the less time they can spend

on delivering functionality and improving the non-

functional technical concerns.

In scenarios where teams invest significant time

in these three areas, and where there are common

requirements across multiple teams, platform

engineering emerges as a solution that can yield

benefits.

“Just as devops frameworks reinvented scalability,

availability, and operability, platform engineering

presents a conveyor belt of swappable tools for an

assembly line of dev teams,” says Marcus Merrell, vice

president of technology strategy at Saucelabs. “This

allows them to circumvent traditional bottlenecks

such as testing, execute efficiently across projects,

and deploy the necessary tools to meet diverse needs

in real-time and get to market faster.”

Benefits of platform engineering

Improving quality and delivering capabilities faster

are common objectives of platform engineering, so

how does this approach address them?

“Platform engineering is the practice of creating

shared, internal services that solve problems

for engineers in one place,” says Chris Cooney,

developer advocate at Coralogix. “Platform

engineering is excellent at solving some of the key

problems that occur at scale.”

In other words, large IT departments with many

development teams stand to benefit from platform

engineering practices. Cooney identifies these

problems platform engineering targets:

• Grow consistency between teams and reduce the

single-solution mentality

• Discover and re-use shared components rather

than rebuilding and customizing

• Build compliance into the platform

The path to adoption

All of this sounds promising, but skeptics will point

out that this isn’t the first time large IT departments

have attempted to productize internal technology

solutions and platforms. Before diving into platform

engineering, organizational leaders and their

teams may want to answer several questions

• Where can platform engineering deliver value

across multiple teams through efficiencies or

compliance improvements?

• How should we organize the platform engineering

development work without creating new

bottlenecks?

• What’s the carrot and the stick to motivate more

development teams to leverage the capabilities

delivered by platform engineering?

• Does platform engineering shift focus so that

development teams spend more time on delivering

functionality and improvements in non-functional

capabilities?

While platform engineering is promising, IT

organizations should start small with simple

ambitions. Identify areas with clear benefits, few

technical barriers, and common requirements, and

start there.

45

