Al-Based Functional Concepts:
Moving Beyond Traditional
Software Prototyping

Al-based functional concepts are changing the

field of product development. In the article, we
explore how Al-driven functional concepts enable
interactive, logic-based prototypes that add value
across the SDLC.

In a digital environment where product design and
development need to keep pace with changing
requirements, traditional prototyping approaches
have clear drawbacks. Methods relying on static
designs and basic clickable mock-ups can result
in misalignments and additional work later on.
Al-basedfunctional concepts offeran alternative by
creating an interactive prototype that incorporates
real logic, data, and backend elements. This
method supports a building-first approach, where
teams construct working models early rather than
focusing heavily on upfront planning. Let's take a
closer look at why this shift is practical, how it adds

value from a business standpoint, and its role in

supporting aspects of the Software Development
Life Cycle (SDLC).

Traditional prototyping & its drawbacks
Traditional prototyping typically involves using
tools like Figma to create visuals and simple
interactions. While these approaches are
useful, they often prioritise extensive planning,
requirements gathering, workflow documentation,
and design alignment before any functional
validation.

This planning-heavy process can lead to several
issues. Stakeholders may interpret static elements
differently, creating uncertainty about system
logic and behaviour. When implementation begins,
unexpected technical challenges can arise,
causing delays and increased costs.

From a business view, this creates inefficiencies.

Executives looking for reliable progress need

CompuNet 39 (October - 2025)




more than visuals; they require demonstrations
of how systems handle data and logic in practice.
Without early functional testing, teams risk
building on flawed foundations, which can slow
time-to-market in fields like fintech, healthcare,
and manufacturing.

Traditional approach vs functional concept

approach

Traditional Approach Functional Concept Approach

2-4 weeks 1-2 weeks
Focus + Requirement ellcitation + Realistic end-lo-end flows

« Visual exploration (Figma) « Working business logic (CRUD/API)

« Initial technical alignment « Tangible value-driving features
Deliverables + Process and Workflow + Deployable Interactive

+ Clickable Prototype + Validated Business Value Estimate

« Preliminary Architecture Overview + Feedback-Driven Refinement Loop
Client Value + Alignment on concept direction « Early valldation of product logle

« No working validation available « Immediate stakeholder feedback
Outcome Documented design vision Executable concept enabling

for estimation and planning early validation, demo readiness,

and client commitment
Al-based functional concept: prioritising

building over planning

Al-based functional concepts shift the focus
to building working prototypes from the outset.
Rather than spending weeks on plans and then
testing static mock-ups, teams use Al to create
deployable applications that include business
logic, data operations, and integrations early in
the process.

This building-first method allows for quick
construction of interactive models that reflect real
operations, such as end-to-end flows with actual
data. It reduces the time spent on theoretical
planning by enabling immediate testing and
refinement. As outlined in guides on Al-assisted
development, using Al through structured prompts

helps break down tasks and generate code

iteratively, promoting a modular approach where
components are built and validated step by step.
Key elements include:

» User interactions: operations like create, read,
update, and delete, supported by real databases.
 Backend support: quickly set up APIs and
authentication using cloud development
environments.

» Behavioural logic: flows that handle conditions
and validations, potentially with Al elements.

This approach minimises the gap between ideation

and execution, allowing teams to test ideas with

minimal initial planning.

Business benefits of a building-first approach
Improved alignment and faster decisions

Lengthy planning phases can delay consensus,
as stakeholders rely on abstract descriptions.
Building functional concepts early lets everyone
engage with prototypes, directly interacting with
features and seeing results in action. This leads to
clearer understanding and quicker decisions, often
reducing alignment time by up to half.

Early feasibility checks and lower risks

Identifying issues late in planning is costly. By
building prototypes with real elements upfront,
teams can spot technical limitations early, such
as integration problems. This helps in directing
efforts toward feasible ideas, potentially cutting
delivery risks by 7o6-.-¥., according to ELEKS:
team estimates based on initial research and
investigation conducted while preparing functional
concepts.

Quicker validation and resource efficiency

According to our team, building-first shortens the

CompuNet 39

(October - 2025)



path from idea to first increment, often from £-f
weeks to 7-) weeks. Al aids in generating code and
structuring elements, supporting rapid feedback
loops that trim unnecessary features. This can
lower prototyping costs significantly and speed up
overall development.
Please note that specific time estimates vary
depending on the individual characteristics of
each project. Reach out via our contact form, and
our experts will provide you with personalised
estimates or set up clarification workshops if
needed.
Support for ongoing development
Prototypes built this way can evolve more easily,
maintaining consistency through shared systems.
For businesses, this means products that are
adaptable, with reduced long-term costs.

Core advantages of Al prototyping

Application of functional concepts in SDLC

Protatyping Shaping
B - T TR e T o BB i A by SR
+ Ly vebdabs i vl ey I
ey ) el @ Yipledplvn o lhiv el
e T ol R
e B - Guizh and Rasla hdors
St by Sprdan
L Do
Cloat product wison wifaut Sharpat, leanet MVP
highggad wath borvene livary rick

Functional concepts can enhance specific parts
of the SDLC without requiring a full overhaul. For
instance, in requirements and design phases, an Al
tool can help generate initial structures and flows,
allowing teams to build prototypes that inform
planning. During implementation, these prototypes
serve as starting points for code, with Al coding

tools assisting in logic and testing.

In testing and deployment, the working models

enable early validation, making iterations more

straightforward. This targeted use of Al prototyping

supports a more efficient SDLC by incorporating

building-first elements where they add value,

such as accelerating feedback in agile setups.

Resources on Al in software development note

that tools like LLMs can automate tasks across

phases, improving speed by 40 - 50% in focused

areas, according to our team»ss analysis.

Tools enabling functional concepts:

+ Figma Make and Lovable: Turn designs into a
functional prototype with logic and integrations.

« Supabase: Provides backend elements like
databases and APlIs.

 Claude and LLMs: Al tools aid in task
breakdown and code generation.

The process involves designing basics, building

with Al tools, connecting backends, and refining

based on tests.

Conclusions

Functional concepts based on Al do not simply
improve the prototyping process but change the
way teams approach product development. By
moving from methodologies that involve intensive
planning to strategies that build functional
prototypes, organisations can reduce rework,
accelerate time to market by several weeks, and
make more informed decisions through early
functional validation.

As companies face increasing pressure to innovate
quickly while minimising risk, Al prototyping offers
a proven path to more efficient and cost-effective

product development that meets market demands.

CompuNet 39 (October - 2025)

S ESISACT





